
How to make PHP WEB applications

less vulnerable?

Author: Kostiantyn Soloviov,

Backend engineer at GOG.com(CD Project Red group);

LinkedIn: soloviov-kostiantyn-php-dev

Agenda:

1. Systemize and analyze threats sources and vulnerabilities;

2. Understanding of how to handle these threats;

3. Find out security-oriented mindset basis;

Threats sources:

1. Open source;

2. Users;

3. Engineers in itself and result of their work(codebase,

environment);

4. Hardware;

Open source advantages:

• Lower software costs;
• Open codebase;
• No vendor lock-in;
• Community support;

Problems with open source:

1. Provided tools are not always used or configured properly;

2. All dependencies are potentially vulnerable;

3. Code can be pentested;

How to make open source usage more secure:

1. During library integration you have to understand:

• Why this library is used for this solution?

• What’s library reputation?

• Are there a better ones?

• How provided configuration meets project requirements?

• Is this configuration correct from the library setup point of

view?

• Which edge cases have implemented config?

• Test it after set up;

How to make open source usage more secure:

2. Consider all received from open source data potentially

vulnerable. Treat it the same as to the user input;

3. Update vulnerable dependencies. To make it easier use

scanners;

4. Log everything (separate logging topics, use remote append-

only storage, protect your log storage from overflow);

5. Monitor suspicious activity;

6. Do not run composer with sudo;

Conclusion:

Open source is still better than closed source because you know

what’s inside of it. Remember, there’s no silver bullet. So,

understand why you use it and use it properly.

Developers threats:

Vulnerability: Social engineering (Cognitive biases, ethology);

Solution: Learn how your brain can trick you. Try to be a fool for

only 5 minutes a day.

Developers threats:

Vulnerability: Weak hashes usage(MD2, MD4, MD5, RIPEMD-160,

and SHA-1);

Solution:

1. Use secure hashes(PBKDF2, scrypt, bcrypt);

2. Strong hash functions give time to react.

3. Do not create own algorithm if you are not a professional

cryptographist;

Developers threats:

Vulnerability: Brute force;

Solution:

1. Lock account after a certain amount of failed attempts;

2. If brute force is not in browser WEB-form. If it is SSH attack

then change default port and make root user inaccessible via

SSH;

3. Provide 2-factor authentication;

4. Limit Logins to a Specified IP Address or Range;

5. Use CAPTCHA;

6. Monitor your logs;

Developers threats:

Vulnerability: Sending sensitive data through information channels

(emails, phone messages, etc);

Solution: Do not send sensitive data like passwords via plain text;

Developers threats:

Vulnerabilities: Broken Access Control(OWASP top 1) & Insecure

design & Insecure object reference;

Solution:

1. White list based development(First of all prohibit all access and

after give it on demand);

2. Proper access validation;

3. Always think about corner cases;

Developers threats:

Vulnerability: Wrong UUID usage;

Solution:

1. Always validate it;

2. Never rely on it for authorization purposes(In certain cases

UUID can be predicted. For instance when it uses timestamps

for uniqueness);

Developers threats:

Vulnerability: Typical environment set up mistakes;

Solution:

1. Turn off debug output and crashes on prod;

2. Environments need to be isolated;

3. Store encrypted backups on another server;

4. In case you need prod data to debug, please give only the

required and the smallest portion of it;

5. Never store credentials in repository. Use secret managers like

Hashicorp Vault, Keywhiz, etc, or Cloud-Native Secret Manager

like AWS’ Secrets Manager.

6. Do not run services under sudo;

User threats:

1. Input(Files, Forms, HTTP Requests);

2. Output(Console, Database, HTTP response);

Input and output problems:

1. Insufficient input filtering;

2. Incorrect output escaping;

Input filtering strategies:

Demilitarized zone vs all places validation

Input filtering approaches:

1. Whitelist vs blacklist filtering;

2. Filters must be reliable and tests covered;

3. Objects should exist only if they are valid;

Output escaping:

1. Special characters should behave like regular characters;

2. Prefixing your output and remember that different output can

have different escaping rules;

Output vulnerabilities:

Vulnerability: XSS(Stored and Reflected) ;

Solution:

1. Sanitize your output;

2. Use the “HttpOnly” flag to make cookies unreachable via XSS;

3. Use GET requests only for reading. If you make actions via

GET method, XSS script can use it for its purposes;

Input vulnerabilities:

Vulnerability: CSRF;

Solution:

1. For CSRF use token that can not be read by a third part script;

2. Expire token once request from form received;

3. Encrypt token;

Input vulnerabilities:

Vulnerability: LFI, RFI;

Solution:

1. Always validate input;

2. If it’s possible avoid passing user-submitted input to any

filesystem/framework API;

3. Build whitelist of files that can be included;

Input vulnerabilities:

Vulnerability: 1st and 2nd order SQL injections;

Solution:

1. Use only PDO. It allow to not interpret input data as SQL

command;

2. Validate all data even if it can not be modified by user input

directly;

3. Use tools for validation like sqlmap;

Input vulnerabilities. PHAR file object injection:

PHP stream wrappers – this are built-in wrappers for various URL-

style protocols for use with the filesystem functions.

Wrappers list:

1. file:// — Accessing local filesystem

2. http:// — Accessing HTTP(s) URLs

3. ftp:// — Accessing FTP(s) URLs

4. php:// — Accessing various I/O streams

5. zlib:// — Compression Streams

6. data:// — Data (RFC 2397)

7. glob:// — Find pathnames matching pattern

8. phar:// — PHP Archive

9. ssh2:// — Secure Shell 2

10. rar:// — RAR

11. ogg:// — Audio streams

12. expect:// — Process Interaction Streams

Input vulnerabilities. PHAR file object injection:

PHAR archive structure:

1. a stub – A PHP file that will bootstrap the archive. The

stub must contain the __HALT_COMPILER(); token, and the

default stub includes the ability to run a PHAR with or without

the PHP extension enabled;

2. manifest - contains meta-data information about the archive, and

its contents.

3. the file contents

4. [optional] a signature for verifying phar integrity (.phar file format

only)

Input vulnerabilities. PHAR file object injection:

PHAR manifest file entry:

Input vulnerabilities. PHAR file object injection:

List of functions that trigger phar manifest desirialization;

copy
file_exists
file
fileatime
filectime
filegroup
fileinode
filemtime
fileowner
fileperms
filesize

filetype
fopen
is_dir
is_executable
is_file
is_link
is_readable
is_writable
lstat
parse_ini_file
readfile

rename
stat
touch
unlink

Input vulnerabilities. PHAR file object injection:

Information that need to be known to run exploit:

1. Know file content;

2. Know file location(enough to know namespace);

3. Know where called unserialize;

Input vulnerabilities. PHAR file object injection:

How to execute the attack;

1. Investigate all required information about codebase;

2. In stub create signature of JPEG file;

3. Create class with payload, serialize it and put it to the manifest

metadata;

4. Upload file to the system;

Input vulnerabilities. PHAR file object injection:

Input vulnerabilities. PHAR file object injection:

Input vulnerabilities. PHAR file object injection:

Input vulnerabilities. PHAR file object injection:

Input vulnerabilities. PHAR file object injection:

Input vulnerabilities. PHAR file object injection:

Input vulnerabilities. PHAR file object injection:

Input vulnerabilities. PHAR file object injection:

How to protect from the attack;

1. Validate input. Code in packages is not vulnerable. Vulnerable code

that substitutes user’s input into them;

2. Never use serialize/unserialize. Use json_encode/json_decode

instead;

3. Understand that execution unserialize function with list of allowed

classes in $options variable does not prevent from code

execution(More about it here:

https://www.php.net/manual/en/function.unserialize.php);

Conclusions:

1. Always remember about security no mater what you do;

2. Play “What if?” game;

3. Be paranoid but don’t be psycho. Do not make security just for

security. Efforts for application hacking should be higher than

obtained reward. Always remember about business value and user

experience;

4. Store as smallest amount of sensitive data as possible;

5. Never trust developers and users;

6. Provide accident reaction practices. Company should have

instructions/protocols of how to react for accidents or systems that

automatically react on it.

7. Check OWASP-top 10, OWASP Application Security Verification

Standard and OWASP Cheat Sheet Series

Sources:

1. https://owasp.org/www-project-top-ten/;

2. https://owasp.org/www-project-application-security-verification-

standard/;

3. https://cheatsheetseries.owasp.org/;

4. https://github.com/CertainGitHubUser/object-injection-poc;

5. https://github.com/ambionics/phpggc;

Q&A

